Intervening Technique	Optimization of Combustion Efficiency of Melting Furnace in Container Glass Manufacturing Industries (Fuel: Natural Gas)			
Before CP	Flue gas exhaust at analysis for the Fur individual furnaces. The measured parameter of the following of the following states of the Gas Monitorial of the gas exhaust at analysis for the Furnation of the Furnat	nace was carr wo furnaces waters are shown as s varies from 12 trature also var	ied out at ere subjected in tables below when 3 with the subjected with tables below to 13 %.	the exhaust of to the exercise w: °C to 525 °C. %
	Parameters	Reading 1	Reading 2	Reading 3
	Oxygen (%)	12.4	12.6	12.8
	Carbon Monoxide (ppm)	821	408	146
	C 1 "			

Parameters	Reading 1	Reading 2	Reading 3
Oxygen (%)	12.4	12.6	12.8
Carbon Monoxide (ppm)	821	408	146
Combustion Efficiency (%)	44	42	42
Carbon Dioxide (%)	4.8	4.6	4.6
Flue Gas Temperature (°C)	518	522	525
Access Air (%)	148	144.8	151.8
Pressure (mBar)	0.18	0.20	0.21

Flue Gas Monitoring Parameters at 55 TPD Furnace

Parameters	Reading 1	Reading 2
Oxygen (%)	13	12.1
Carbon Monoxide (ppm)	0.0	0.0
Combustion Efficiency (%)	42.8	46
Carbon Dioxide (%)	4.6	4.9
Flue Gas Temperature (°C)	525	525
Access Air (%)	151	140
Pressure (mBar)	0.17	0.21

Recommendation:

- The same can be maintained by regular monitoring of flue gas sample with the help of a portable flue gas analyzer or by installing O2 sensor at the furnace exhaust for flue gases and a modulating motorized damper for combustion air control.
- The sensor will provide constant feedback of O2% to the damper which will in turn regulate the flow of combustion air to maintain the combustion efficiency at optimum level of 80 - 90% (Achievable combustion efficiency).
- Thus, it is recommended to operate the furnaces at optimum efficiency by controlling (manual/auto) air fuel ratio so that to get maximum combustion efficiency, the fluidised bed furnaces are known for generating maximum combustion

	efficiency in principal more than 80 %, thus plant should
	target to achieve the same initially manual adjustment
	through frequency adjustment and monitoring oxygen
	percentage in flue gases and then putting the drives in auto
	with online O2 sensor in exhaust and feedback to supply air,
	although caution need to be considered with setting of
	minimum air requirement for pressure & draft control within
	furnace.
	By maintaining optimum combustion efficiency even upto 75
	% from existing (average 45 %) in these two furnaces, plant
	can save approximately 280524 SCM per annum.
D C:	
Benefit	
Environmental	• Per Day reduction in the gas consumption: 779 SCM.
	• Per Year reduction in gas consumption: 280524 SCM.
	• Per Day reduction in Greenhouse Gas (CO2) emission: 1.46
	MT of CO2
	• Per Year Reduction in Greenhouse Gas (CO2) emission: 525
	MT of CO2
Economical	
Leonomicat	Investment: Rs. 30,00,000/-for 2 nos. of Furnace
Leonomicat	Annual Savings: Rs. 50,49,000/- per annum
Leonomicat	